Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Schemske, D (Ed.)We used nuclear genomic data and statistical models to evaluate the ecological and evolutionary processes shaping spatial variation in species richness inCalochortus(Liliaceae, 74 spp.).Calochortusoccupies diverse habitats in the western United States and Mexico and has a center of diversity in the California Floristic Province, marked by multiple orogenies, winter rainfall, and highly divergent climates and substrates (including serpentine). We used sequences of 294 low-copy nuclear loci to produce a time-calibrated phylogeny, estimate historical biogeography, and test hypotheses regarding drivers of present-day spatial patterns in species number. Speciation and species coexistence require reproductive isolation and ecological divergence, so we examined the roles of chromosome number, environmental heterogeneity, and migration in shaping local species richness. Six major clades—inhabiting different geographic/climatic areas, and often marked by different base chromosome numbers (n = 6 to 10)—began diverging from each other ~10.3 Mya. As predicted, local species number increased significantly with local heterogeneity in chromosome number, elevation, soil characteristics, and serpentine presence. Species richness is greatest in the Transverse/Peninsular Ranges where clades with different chromosome numbers overlap, topographic complexity provides diverse conditions over short distances, and several physiographic provinces meet allowing immigration by several clades. Recently diverged sister-species pairs generally have peri-patric distributions, and maximum geographic overlap between species increases over the first million years since divergence, suggesting that chromosomal evolution, genetic divergence leading to gametic isolation or hybrid inviability/sterility, and/or ecological divergence over small spatial scales may permit species co-occurrence.more » « less
-
Abstract Winter annuals comprise a large fraction of warm-desert plant species, but the drivers of their diversity are little understood. One factor that has generally been overlooked is the lack of obvious means of long-distance seed dispersal in many desert-annual lineages, which could lead to genetic differentiation at small spatial scales and, ultimately, to speciation and narrow endemism. If our gene-flow hypothesis is correct, individual winter-annual species should have populations with genetic spatial structures implying short distances of gene flow. To test this idea, we sampled six populations of Eschscholzia parishii (Papaveraceae) in three pairs of watersheds within a 28-km radius in southern California. We quantified genetic diversity and structure and inferred the distance of gene flow in these populations using single nucleotide polymorphisms derived from genotyping-by-sequencing. Estimated distances of gene flow were quite small (σ = 10.4–14.9 m), with strong genetic structure observed within and between populations. Kinship declined steeply with ln distance (r2 = 0.85). Petal size and shape differed significantly between the northernmost and southernmost populations. These findings support the hypothesis that the high diversity of warm-desert winter annuals might result, in part, from genetic differentiation within species at small spatial scales driven by poor seed dispersal.more » « less
-
Abstract Baobabs (Adansonia) are a cohesive group of tropical trees with a disjunct distribution in Australia, Madagascar, and continental Africa, and diverse flowers associated with two pollination modes. We used custom-targeted sequence capture in conjunction with new and existing phylogenetic comparative methods to explore the evolution of floral traits and pollination systems while allowing for reticulate evolution. Our analyses suggest that relationships in Adansonia are confounded by reticulation, with network inference methods supporting at least one reticulation event. The best supported hypothesis involves introgression between Adansonia rubrostipa and core Longitubae, both of which are hawkmoth pollinated with yellow/red flowers, but there is also some support for introgression between the African lineage and Malagasy Brevitubae, which are both mammal-pollinated with white flowers. New comparative methods for phylogenetic networks were developed that allow maximum-likelihood inference of ancestral states and were applied to study the apparent homoplasy in floral biology and pollination mode seen in Adansonia. This analysis supports a role for introgressive hybridization in morphological evolution even in a clade with highly divergent and geographically widespread species. Our new comparative methods for discrete traits on species networks are implemented in the software PhyloNetworks. [Comparative methods; Hyb-Seq; introgression; network inference; population trees; reticulate evolution; species tree inference; targeted sequence capture.]more » « less
An official website of the United States government
